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ONE-DIMENSIONAL STABILITY OF DISSIPATIVE COUETTE FLOW* 

V.L. MAZO and M.S. RUDERMAIJ 

Non-stationary one-dimensional flow, and especially the one-dimensional 

stability of a stationary Couette flow of a viscous incompressible fluid 

is considered, taking into account dissipative heat, under the assumption 

that the viscosity decreases fairly rapidly, e.g., exponentially, as the 

temperature incrases. It is shown that when the fluid is very viscous, 

the non-stationary plane problem can be reduced to a non-stationary 

problem of heat transfer in media with heat sources depending non-linearly 
on temperature. The dependence of the heat sources on temperature in the 

latter problem differs substantially for different types of boundary 
conditions in the initial problem. If a tangential stress is specified at 

the boundary, then the density of the heat sources will depend on 

temperature locally (such a problem was studied earlier in /l-6/. When 

the velocities of the boundary planes are given, the density of heat 
sources will depend on the temperature distribution as a whole, over the 

volume. 
As regards the stationary flow inspected here for stability, it does 

not always exist, nor is it unique /7-14/. We can utilize the results of 

/l, 2, 15-19/ by reducing the problem of the existence and uniqueness of 
such flow to the stationary problem of the temperature distribution in media 

with heat sources depending non-linearly on temparture. 

*Prikl.:4atem.Mekhan.,50,5,868-372,1986 



615 

1. Let us suppose that z* is the transverse coordinate, f, is the time, T is the 

temperature, II* is the velocity, T* is the tangential stress, c is the heat capacity, p is 

the density and ). isthe thermal conductivity (the last three parameters are assumed constant) 

and co,(~) is the fluidity (the inverse dynamic viscosity) depending on the temperature T. 

We will change to the following dimensionless coordinates: a=z,h where h is the half- 

distance between the two boundary planes, t = t,lt, where t, = pcl~~ih; d = (T - To)’ AT where T, is 

some characteristic temperature, and IT is its characteristic scattering II= U* u0 where 

uO? = ZilTq, (To); r = T* TV where TV = uO'('p* (T,) 1~); cp (8) = cp* (T) :“p* (T,) and in the case of exponential 

fluidity we have ~((6)= c*. 
The equations describing the flow in question have the following form in dimensionless 

variables (Pr is the Prandtl number): 

We assume that equal constant temperature is specified on both boundary planes 

z=-l_l, +=0 (I.") 

We consider two types of dynamic boundary conditions. In the first case we assume that 

a constant tangential stress is specified on one of the boundary surfaces 

(type 1) i = 1, T = 7,; L = 0, II : 0 (1.3) 

(The second condition is not essential and is chosen so that, in what follows, certain formulas 

will be found to be identical for both types of boundary conditions). In the second case we 

assume that the velocities of the boundary planes are given 

(type 2) z I= c,. u = +,,, _ 11.4) 

The stationary version of Eq.(l.l) has the form 

According to the second equation of (1.5), ? is constant. In the case of dynamic 

boundary conditions of type 1 (1.3) we have 

(type 1) 7 = T, (1.6) 

and in the case of conditions of type 2 (1.4) we average the third equation of (1.5) over the 

interval from -1 to 1 to obtain 

(type 2) ; CCr(B), =u1 (1.i) 

where <...; denotes averaging. 

In this manner we reduce system (1.5) to its first equation supplemented by (1.6) or 

(1.7). When the value of ? is given, the first equation of (1.5) is closed and identical to 

the stationary heat transfer equation in the media with heat sources depending non-linearly 

on temperature, and this enables us to utilize the already-known restults of /l, 2, 15-19/. 

These results should be applied to the problem under consideration taking into account the 
connection between ? and the dynamic boundary conditions given by relations (1.6) or (1.7). 

When the law governing the fluidity is exponential, the stationary problem has the 

following solution /9, 10, 13-15/: 

where cr is a parameter determined in the case of type 1 boundary conditions from the equation 

(type 1) ~~ = ozch D (1.9) 

and in the case of type 2 boundary conditions from the equation 

(type 2) U, = sh (T (1.10) 

Formulas (1.8) together with Eq.(1.9) or (1.10) yield a complete solution of system 

(1.5) with boundary conditions (1.2)-(1.4). This yields the following assertions. 

When the tangential stress at the boundary T, is given, a critical value of applied 

tangential stress ~~~ and the corresponding critical value of the parameter oz. given by the 
equation 

~,,tll~,, = 1 (3_ z I,?) (1.11) 

exist such, that Eq.(1.9) has a solution in CJ only when T,<T~~. When T,(T<~, we have two 

solutions of (1.9) in 0. The smaller of these solutions (o<oC3) gives a low-temperature 

solution of the stationary problem, and the larger solution (G> oCr) is the high temperature 

one. When TV= Q~, we have a single solution of (1.9) in 0 which yields a unique solution 

of the stationary problem. When 'cl > lCy , Eq.(1.9) has no solutions in CJ, and this implies 

that the stationary problem has no solution (a hydrodynamic thermal explosion occurs). 
When the velocities of the boundan? planes +I+ are given, Eq.(l.lO) alwayshasasolution 
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which is unique in G. This means that the solution of the stationary problem always exists 
(there is no hydrodynamic thermal explosion) and is unique. 

2. Let us simplify the non-stationary problem by assumingthatthe fluid is highly 
viscous (Pr>f)* This means that the characteristic time of flow of the fluid is much shorter 
than the characteristic time of temperature relaxation. Such a flow is dynamically quasi- 
stationary, i.e. the velocity distribution in its "rapid" time manages to adjust itself to 
the "slowly" varying temperature distribution. The second equation of (1.1) becomes, under 
this assumption, the equation dTt.'dZ = 0, from which it follows that the tangential stress is 
constant over space just as in the stationary case, but varies, generally speaking, with time. 
When the tangential stress is given at the boundary (condition (1.3)). 
(type 1) lZ = TX (2.l) 
and consequently the tangential stress T does not vary with time. When the velocities of the 
boundary planes are given (condition (1.4))‘ then, averaging the third equation of (1.1) over 
the interval from -1 to 1, we obtain 

(type 2) 7 trJ (I?), = *+ 12.2) 

from which we see that the tangential stress T and temperature B both vary with time. 
Therefore, in the first case the first equation of (l-l), which can be solved together 

with the trivial relation (2.1) I is reduced to 

(type 1) 

which describes non-stationary heat transfer in a medium with heat sources depending non- 
linearly on temperature. In the second case the first equation of (1.1) and relation (2.2) 
are solved together and reduce to a single equation 

(type 2) 

which can also be regarded as one describing heat transfer in the medium containing heat 
sources depending non-linearly on temperature, with one difference. The heat source intensity 
at each point depends on temperature not only at this point, but also on the temperature 
distribution over the whole volume. 

Let us investigate the stability of the stationary solutions under small perturbations. 
We shall write the non-stationary quantities *,T and u in the form of a sum of stationary 
solutions S,Z and ~,and small perturbations 6',+ and u' (henceforth we shall omit the 
primes). Let us linearize the first equation of (1.1) and relations (2.1) and (2.2) with 
respect to small perturbations, assuming that the perturbations vary exponentially with time 
with the increment ),, and using for the stationary solutions the first equation of (1.5) and 
relations (1.6), (1.7). As a result we obtain the following equation for the perturbations: 

(2.3) 

with boundary condition (1.2) and relations 

(type 1) T---O 

(type 2) s fcp' (W\R, <w(S), T = 0 

Reducing Eq.(2.3) and relations (2.4) or (2.5) to a single equation, we obtain 

(%.4) 

(2.5) 

(type 1) 

(type 2) 

(2.6) 

The boundary conditions have, as before, the form (1.2). 
Thus in the first case we have the standard Sturm-Liouville problem, which cannot be 

said of the second case. In both cases the corresponding Eq.(2.6) with boundary condition 
(1.2) forms a selfconjugate problem. Therefore the incremental spectrum is real and there 
is no oscillatory mode. 

3. In what follows, we shall consider the case of exponential fluidity, using formulas 
(1.8) for the stationary solutions. 1t will now be convenient f/20/, Sect.23, problem 5) to 
change to a new variable 5 = tb (UZ) and write h = @o*. Then Eqs.(2.6) will be written in the 
fOlT0 
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(type 1) 

(type 2) 

(3.1) 

(3.2) 

Here c...) denotes averaging over the interval from --w to o, where o= the. The 
boundary conditions in the new variables will have the form 

j=+o,6=0 (3.3) 

We note, before anything else, that when 0=0, both equations of (2.6) degenerate into 
the equation &+/dz~=O, and this implies that the incremental spectrum is negative, i.e. when 
(I=o, the stationary solutions are stable. 

We can expect that the limit of stability will be those (J-O, for which the maximum 
increment will vanish. Therefore, to determine the limits of stability, we write in Eqs.(3.1) 
and (3.2) p=O and find IJ=IS~ for which solutions of these equations exist satisfying the 
boundary conditions (3.3). 

When p=O, the solutions of (3.1) are Legendre functions of order 1 /21/, i.e. 

(type 1) 0 = a5 + fi (5 Arth c-- i), CL, fi = const 

From the boundary conditions (3.3) it follows that a= 0 and a.,tho, = 1. The last equation 
is the same as (l.ll.), i.e. the limit of stability ea is the same as the critical value ser. 

Thus when (I= 0, all increments are negative and they remain such when o< tscr; when 

e = OCcF' one of the increments, which is necessarily the largest one, vanishes; when @J > accr. 
the largest increment becomes positive and there are no other passages through zero. (Some 
of the above conclusions hold only when the spectral curves are situated in a general position. 
The results of Sect.4 show that this is indeed the case). In other words, when IJ<G~~ we 
have stability, when IJ = ocr we have neutral stability and when 0 > u<* we have instability. 
Therefore, in the case when the tangential stress is specified at the boundary,or, which 
amounts to the same, if heat is transferred in the medium with heat sources which depend non- 
linearly but locally and also exponentially, on temperature, then out of the two stationary 
solutions, the low temperature one is stable and the high temperature one unstable, which 
agrees with the results of /1-S,! 

When bt=O, we can obtain the solution of (3.2) from solutions of (3.1) with FL= 0, using 
the method of varying the constants. We have 6 = a5 + p(; Arth 6 - i)+ :! t&j. Taking the mean, 
we finally obtain 

(type 2) iJ = a; $ b (5 Arth 5 - i +- f (o)), a, fi = conl;t 
f(o) = (0 + Ih CI - crthz cr)/th o 

From the boundary conditions (3.3) it follows that a=.0 and o,tho,= 1 A f(n,). The last 
equation has no solutions. This means that the increments will not pass through zero no matter 

what the value of o, and since they are negative when d = 0, they will 

K remain negative for all values of 0. This implies that when the 
velocities of the boundary planes are given, the unique stationary 
solution is always stable. 

a 
4. Let us find the spectrum of the perturbation increments for an 

arbitrary value of the parameter (r. Before anything else, we note 
that Eqs.(3.1) and (3.2) together with the boundary conditions (3.3) 
form selfconjugate problems and are invariant under reflection <--5. 
Therefore, the incremental spectrum is real and the eigenfunctions can, 
for at least a single (non-repeated) spectrum, be either even or odd. 

In the first case when we must start with Eq.(3.1), its solutions 
are the generalized Legendre functions of the order of unity and degree 
P /21/. Combininq these functions linearly, we obtain the following 
pair of even solutions a+ and odd solutions a- of (3.1) : 

a, (5) = rh (1~ Arth 5) - ; sh (II Art11 j)/p 
o_(G) = : ch(p Arth 5) - p sh(P Arth 5) 

We seek the spectrum from the requirement that boundary conditions (3.3) hold for the 
solutions a*. The general pattern of behaviour ofthespectrum (the quantities .\.=signhJm 
relative to CJ is shown in the figure with solid lines. 

In the second case, in which we must start with Eq.(3.2), its even solution b, can be 
obtained from the solutions a* of (3.1) and by using the method of varying the constants. 
From the boundary conditions (3.3) we obtain 



678 

Taking the mean, we arrive at the equation 

a, (01) {u (:) d: - a (0)) f a, (;) d; - o (1 - ~2) a+ (OI) = 0 

0 0 

The problem of the behaviour of the increments with even indices relative to (J is shown 
in the figure by dashed lines. 

For the odd solution of (3.2) we have b_=n_, since the mean of an odd function is zero. 
It follows from this that the increments with odd indices from the previous case will also be 

the increments in this case. 

The main special feature characterizing the behaviour of the incremental spectrum is the 

fact that as o increases, i.e. as the velocity of one boundary relative to the other boundary 

increases, the perturbation increments change places pairwise (an increment with the even 
index and the increment with the next higher odd index) during the passage through some value 

of (i specific for every pair, and the first pair of increments changes places during the 

passage through n=l,P. This implies that the character of the relaxation of the perturbations 
changes during the passage through such values of (T beginning with ez1.P. Moreover. all 
increments are separated uniformly (for all values of o) from zero by an amount n214. This 
means that irrespective of the value of the relative velocities of the boundary planes, the 

long wave (with small wave numbers) two- and three-dimensional perturbations, as well as the 

one-dimensional perturbations discussed here, cannot upset the stability of the stationary 

mode. 
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ONE REPRESENTATION OF THE CONDITIONS OF THE COMPATIBILITY OF DEFOR~TIONS* 

V.I. MALYI 

It is shown that the conditions of the compatibility of deformations 
be represented in the form of three equations in the region occupied 
the deformed body, and three boundary conditions on its surface. A 
combination of the requirements of the conditions of equilibrium and 

can 

by 

campatibility leads to a unique formulation of the problem in terms of 
the stresses for the deformed body in the form of a system of six equations 
for the six unknown components of the stress tensor, and of a set of 
boundary conditions corresponding to the ninth order of the system of 
equations. 

The classical formulation of the problem in terms of the stresses 
for a deformed rigid body leads to the need to solve a system containing 
its three equations of equilibrium and six compatability equations for 
six unknown components of the stress tensor. It can therefore be 
expected that some of the demands imposed by the formulation of the problem 
may be redundant. After all, such reasoning has been used systematically 
in similar situations in the scientific literature when formulating new 
problems, and was found to be effective. 

1. We shall consider an elastic body occupying a three-dimensional region V, bounded 
by the surface S. We introduce in the region a Cartesian system of coordinates 5i with basis 
vector ei, so that the vector n normal to the surface S has components ni. We shall denote 
differentiation with respect to the .zi coordinate by the index following the comma. We 
assume that the volume forces fi and surface forces Pi are given. The mechanical properties 
of the material of the body in question will be described, generally speaking, by the follow- 
ing non-linear defining relations: 

?ij = Fzj (oki) t1.1) 

connecting the deformation tensor "tj and stress tensor ~1. 
The classical formulation of the boundary value problem of the mechanics of a deformable 

rigid body in terms of the stresses has certain specific features which merit attention. It 
is insufficient to satisfy three equations of equilibrium 

Gij j +fi = 0, XGV (1.2) 

with static boundary conditions 
oijnj = Ii?, xfzs (1.3) 

in order to determine uniquely the six components of the stress tensor o,~. Since the stresses 
are connected with the deformations by means of the defining Eqs.(l.l), the missing relations 
can be obtained from the natural geometrical Saint Venant conditions of compatibility for the 
components F<j (x) of the deformation tensor. These can be written in the form /l/ 

Rij(X)~FFij,h.h.+'kl;*ij-Pi~,~j-Fjli,h.~' XtSV 12.4) 

Although now we have more relations (1.4) than is necessary to formulate a definite 
system of equations for six functions lJij (or F& and the system (1.1) becomes overdefined 
*Prikl.Matem.~fekhdn..50,5,872-875,1986 


